Stabilized mixed hp-BEM for frictional contact problems in linear elasticity

نویسندگان

  • Lothar Banz
  • Heiko Gimperlein
  • Abderrahman Issaoui
  • Ernst P. Stephan
چکیده

We analyze stabilized mixed hp-boundary element methods for frictional contact problems for the Lamé equation. The stabilization technique circumvents the discrete inf-sup condition for the mixed problem and thus allows us to use the same mesh and polynomial degree for the primal and dual variables. We prove a priori convergence rates in the case of Tresca friction, using Gauss-Legendre-Lagrange polynomials as test and trial functions for the Lagrange multiplier. Additionally, a residual based a posteriori error estimate for a more general class of discretizations is derived. It in particular applies to discretizations based on Bernstein polynomials for the discrete Lagrange multiplier, which we also analyze. The discretization and the a posteriori error estimate are extended to the case of Coulomb friction. Several numerical experiments underline our theoretical results, demonstrate the behavior of the method and its insensitivity to the scaling and perturbations of the stabilization term.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On hp-adaptive BEM for frictional contact problems in linear elasticity

A mixed formulation for a Tresca frictional contact problem in linear elasticity is considered in the context of boundary integral equations, which is later extended to Coulomb friction . The discrete Lagrange multiplier, an approximation of the surface traction on the contact boundary part, is a linear combination of biorthogonal basis functions. In case of curved elements, these are the solut...

متن کامل

Adaptive hp-FEM for the Contact Problem with Tresca Friction in Linear Elasticity: The Primal Formulation

We present an a priori analysis of the hp-version of the finite element method for the primal formulation of frictional contact in linear elasticity. We introduce a new limiting case estimate for the interpolation error at Gauss and Gauss-Lobatto quadrature points. An hp-adaptive strategy is presented; numerical results shows that this strategy can lead to exponential convergence.

متن کامل

Adaptive hp-FEM for the Contact Problem with Tresca Friction in Linear Elasticity: The Primal-dual Formulation and a Posteriori Error Estimation

We present an a priori analysis of the hp-version of the finite element method for the primal-dual formulation of frictional contact in linear elasticity. We employ a novel hp-mortar projection operator, which is uniformly stable in the mesh width and grows slowly in the polynomial degree. We derive an hp-FEM residual error indicator, develop an hp-adaptive strategy that is based on testing for...

متن کامل

A Stabilized Lagrange Multiplier Method for the Finite Element Approximation of Frictional Contact Problems in Elastostatics

In this work we consider a stabilized Lagrange multiplier method in order to approximate the Coulomb frictional contact model in linear elastostatics. The particularity of the method is that no discrete inf-sup condition is needed. We study the existence and the uniqueness of solution of the discrete problem.

متن کامل

Explicit mixed strain-displacement finite elements for compressible and quasi-incompressible elasticity and plasticity

This paper presents an explicit mixed finite element formulation to address compressible and quasi-incompressible problems in elasticity and plasticity. This implies that the numerical solution only involves diagonal systems of equations. The formulation uses independent and equal interpolation of displacements and strains, stabilized by variational subscales (VMS). A displacement sub-scale is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Numerische Mathematik

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2017